TD2 - Analyse factorielle des correspondances et analyse des correspondances multiples

MAF 2025-2026

Ce TD a pour but de reprendre les notions de base de l'analyse factorielle des correspondances (AFC) et de l'analyse des correspondantes multiples vues en cours mais à partir d'exemples simples. Ce TD permet aussi de voir les commandes principales utiles pour mettre en oeuvre ce type de méthode.

1 Dégustation de fromages

On s'intéresse à 8 fromages AOP, évalués par un panel de dégustateurs à l'aide de 7 descripteurs sensoriels. Pour chaque fromage, les dégustateurs devaient choisir le descripteur jugé le plus caractéristique.

Les descripteurs sont doux, salé, fruité, piquant, crémeux, sec, odorant

Les fromages sont Comté, Beaufort, Camembert, Roquefort, Munster, Chèvre frais, Reblochon, Emmental

Le tableau suivant donne, pour chaque fromage, le nombre de fois où chaque descripteur a été choisi.

1.1 Tableau 1 : Fromages × descripteurs

	doux	salé	fruité	piquant	crémeux	sec	odorant
Emmental	8	3	10	0	9	1	2
Beaufort	7	4	8	0	8	2	1
Camembert	5	6	1	1	7	0	6
Roquefort	0	9	0	10	1	0	9
Munster	1	7	0	8	2	0	10
Chèvre frais	9	1	4	0	11	0	1
Reblochon	4	6	3	1	5	2	5
Comté	6	5	2	0	3	6	1

On note ce tableau de contingence $(X = (x_{ij}))$ avec

⁻ (i = 1,...,I) les fromages,

⁻ (j = 1,...,J) les descripteurs.

- 1. En reprenant les notations du cours combien, donner les valeurs de $k_{1+},\,k_{+2},\,n,\,k_{12},\,f_{1+},\,f_{+2},\,f_{ij}$
- 2. Sous l'hypothèse où le type de fromage et le descripteur sont deux variables indépendantes, quelle relation devrait vérifier les fréquences ?

1.2 Profils lignes

- 3. Donner pour chaque decripteur le nombre de fois où il a été choisi.
- 4. Rappeler la forme de la matrice de données utilisées pour étudier les profils lignes.
- 5. Rappeler le poids attribué à chaque individu (chaque ligne).
- 6. Déterminer le profil ligne moyen.
- 7. Rappeler la métrique utilisée et calculer l'inertie.
- 8. Quel est le nombre d'axes principaux maximum?

1.3 Profils colonnes

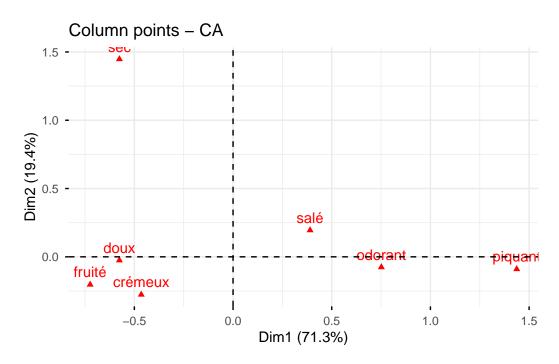
Pour vérifier votre compréhension, essayer de répondre aux mêmes questions sur les profils colonnes.

1.4 Mise en oeuvre de l'AFC

- 9. A quelle valeur correspond la somme des valeurs propres?
- 10. Dans quel cas, une valeur propre vaut 1?
- 11. Voici les valeurs propres obtenues sur les données de dégustation fromage, Combien d'axes avez-vous envie de considérer ?

	eigenvalu	e percentage	of v	variance	cumulative	percentage	of	variance
\dim	1 0.4925864639)	71.2	29381599				71.29382
dim	2 0.1342574414	ŀ	19.4	43156385				90.72538
dim	3 0.0430350236	3	6.2	22861422				96.95399
dim	4 0.0178732104	ŀ	2.5	58685423				99.54085
dim	5 0.0029255339)	0.4	42342308				99.96427
dim	6 0.0002468579)	0.0	03572864			1	100.00000

1.5 Analyse des profils colonnes


12. Les contributions à la construction des axes de chacun des descripteurs sont données cidessous. Quels sont les descripteurs les plus contributifs pour le premier axe, pour le second ?

	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6
doux	12.187581	0.0877877	7.0322716	12.879109	1.8845841	47.8291191
salé	5.736433	5.2345594	0.6389908	16.237836	50.1845312	3.4156131
fruité	13.485453	3.9072547	62.0039410	7.062007	0.8643095	0.0073517
piquant	37.949380	0.5451211	12.3265268	39.561058	0.2088129	0.3593277
crémeux	9.143291	11.8691832	12.4980939	2.651583	2.4058488	40.6175206
sec	3.349047	77.6759893	0.3411195	1.734490	4.1735057	7.7484730
odorant	18.148815	0.6801046	5.1590565	19.873917	40.2784077	0.0225948

13. 13. Le tableau ci dessous donne la qualité de la représentation. Identifier un descripteur peu contributif à la création de l'axe 1 et pourtant bien représenté.

	Dim 1	Dim 2	Dim 3	Dim 4	Dim 5	Dim 6
doux	0.9144098	0.0017952	0.0460955	0.0350614	0.0008398	0.0017984
salé	0.7075103	0.1759652	0.0068853	0.0726673	0.0367607	0.0002111
fruité	0.6666470	0.0526451	0.2677868	0.0126671	0.0002538	0.0000002
piquant	0.9344436	0.0036585	0.0265173	0.0353457	0.0000305	0.0000044
crémeux	0.6722481	0.2378503	0.0802806	0.0070738	0.0010506	0.0014966
sec	0.1359107	0.8591623	0.0012094	0.0025540	0.0010059	0.0001576
odorant	0.9191485	0.0093879	0.0228269	0.0365209	0.0121152	0.0000006

14. On obtient la projection suivante pour les profils colonnes dans le premier plan principal. Que pouvez-vous dire des liens entre les descripteurs ?

- 15. A votre avis où devrait-on trouver le munster?
- 16. Voici la représentation conjointe des profils lignes et colonnes, rédiger 5 lignes d'analyse obtenue à partir de cette représentation.

1.6 Variables supplémentaires

17. Selon vous, à quel endroit du plan s'attend-on à trouver un crottin de chèvre bien sec, le livarot, le caprice des Dieux ?

2 Analyse des activités de Loisir

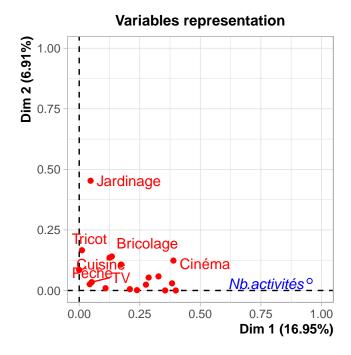
La base loisirs est un jeu de données individuel destiné à l'étude des comportements de pratique des loisirs et de leurs déterminants socio-démographiques. Chaque observation correspond à un individu, et les variables renseignent :

les pratiques de loisirs Un ensemble de variables binaires ou qualitatives décrivant la participation à différentes activités culturelles, récréatives ou domestiques : Lecture, Écouter.musique, Cinéma, Spectacle, Exposition, Ordinateur, Sport, Marche, Voyage, Jouer.musique, Collection, Activité.bénévole, Bricolage, Jardinage, Tricot, Cuisine, Pêche, TV (niveau d'utilisation de 0 à 4).

Des indications socio-démographiques Sexe, Âge, Situation.matrimoniale et Profession fournissent des informations permettant de caractériser les individus et d'expliquer les variations de comportements de loisirs. Il y a quelques valeurs manquantes.

Une Variable synthétique Nb. activités est une variable dérivée indiquant, pour chaque individu, le nombre total d'activités pratiquées parmi celles listées.

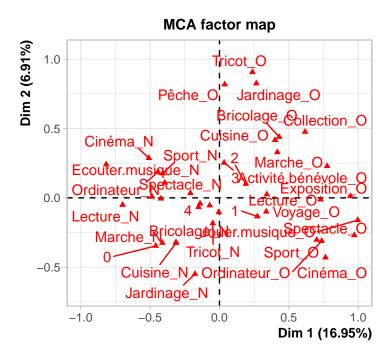
Ces données sont disponibles sur le site de François Husson

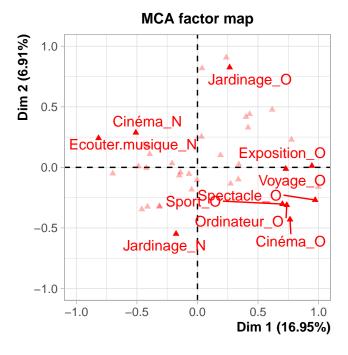

1. On cherche à construire une visualisation de cette base, permettant de mettre en évidence des liens potentiels entre différentes. Quelle est la méthode adaptée ?

- 2. Rappeler les éléments clés pour construire une ACM (tableau de données, métrique et poids).
- 3. L'analyse des correspondances multiples est mise en oeuvre à l'aide de la fonction MCA ci-dessous. Seules les activités de loisirs sont utilisées pour construire ACM. Indiquez toutes les variables supplémentaires.
- 4. A partir du graphique d'inertie ci-dessous, discuter la répartition de l'inertie sur les 2 premières dimensions.

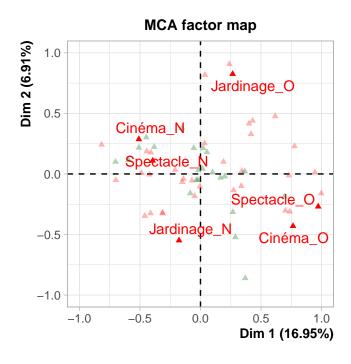
	eigenvalue	percentage of variance	cumulative percentage of variance
dim 1	0.1977116	16.946704	16.94670
$\dim 2$	0.0806491	6.912781	23.85948
$\dim 3$	0.0720218	6.173298	30.03278
$\dim 4$	0.0628724	5.389066	35.42185
$\dim 5$	0.0584600	5.010860	40.43271
dim 6	0.0558124	4.783924	45.21663
$\dim 7$	0.0555234	4.759147	49.97578
dim 8	0.0533082	4.569278	54.54506
dim 9	0.0530444	4.546664	59.09172
dim 10	0.0491301	4.211153	63.30288
dim 11	0.0464933	3.985139	67.28802
$\dim 12$	0.0450743	3.863513	71.15153
$\dim 13$	0.0435131	3.729690	74.88122
dim 14	0.0433607	3.716628	78.59785
$\dim 15$	0.0408000	3.497142	82.09499
dim 16	0.0379816	3.255564	85.35055
dim 17	0.0373349	3.200134	88.55069
dim 18	0.0362192	3.104506	91.65519
dim 19	0.0349682	2.997272	94.65246
dim 20	0.0323421	2.772180	97.42464
dim 21	0.0300458	2.575355	100.00000

2.1 Représentation des variables

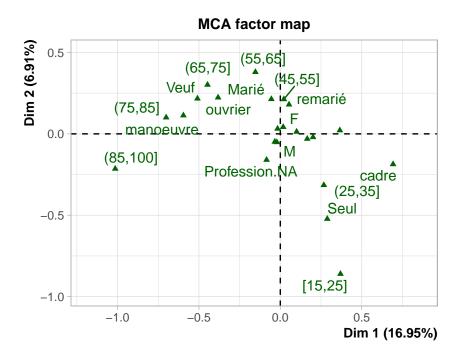

5. Expliquer ce qui est représenté sur le graphique suivant et discuter du rôle particulier de la variable quantitative supplémentaire.


6. Quelles sont les variables les mieux représentées sur l'axe 1, l'axe 2 ?

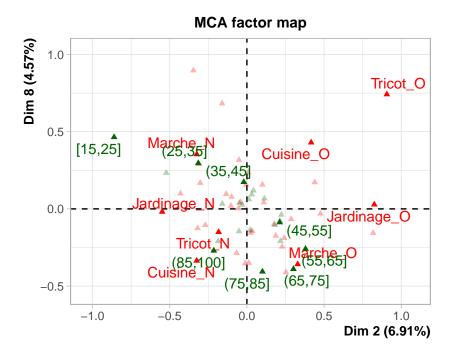
2.2 Représentation des différentes modalités.


Le graphique ci-dessous représente l'ensemble des modalités

7. Pour y voir plus clair, on s'intéresse au 10 variables les plus contributives, quel enseignement pouvez-vous tirer de ce graphique ?


- 8. Peut-on affirmer que les personnes qui vont à des expositions ont également tendance à aller au spectacle ?
- 9. Les personnes adeptes du jardinage passent-elles peu de temps sur leur ordinateur ?
- 10. A votre avis quelles sont les caractéristiques démographiques des personnes adeptes du Jardinage ?
- 11. Dans le graphique ci-dessous, on ne représente que les modalités dont le \cos^2 est supérieur à 0.4. Expliquer de quel \cos^2 il est question. Comparer avec le graphique précédent. Est ce surprenant ?

2.3 Prise en compte de variables supplémentaires.


On s'intéresse à la variable suppémentaire Age.

12. Selon votre intuition à la question 10, ou devrait-on retrouer les personnes de 65 à 75 ans ?

- 13. Que constatez-vous pour la variable Age?
- 14. Le tableau ci-dessous donne la qualité de représentation pour chacune des modalités de la variable Age. Quelle information peut-on en tirer ?

- 15. On refait l'analyse en gardant plus de dimensions principales (argument ncp de MCA) et on illustre la qualité de la représentation des (25-35] pour chaque axe principal. Comment expliquer cette qualité de représentation ?
- 16. Quel est le plan le plus pertinent pour bien visualiser les sondés de la catégories (25–35]
- 17. Dans le graphique ci-dessous, seules les modalités dont le cos2 sont supérieures à 0.2 sont représentées. Discuter ce que vous voyez en 5 lignes max.

