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An autoregressive model to describe fishing
vessel movement and activity
P. Gloaguena*, S. Mahévasa, E. Rivotb, M. Woillezc,b, J. Guittonb, Y. Vermardd

and M. P. Etiennee

The understanding of the dynamics of fishing vessels is of great interest to characterize the spatial distribution of the
fishing effort and to define sustainable fishing strategies. It is also a prerequisite for anticipating changes in fishermen’s
activity in reaction to management rules, economic context, or evolution of exploited resources. Analyzing the trajectories
of individual vessels offers promising perspectives to describe the activity during fishing trips. A hidden Markov model with
two behavioral states (steaming and fishing) is developed to infer the sequence of non-observed fishing vessel behavior along
the vessel trajectory based on Global Positioning System (GPS) records. Conditionally to the behavior, vessel velocity is
modeled with an autoregressive process. The model parameters and the sequence of hidden behavioral states are estimated
using an expectation–maximization algorithm, coupled with the Viterbi algorithm that captures the most credible joint
sequence of hidden states. A simulation approach was performed to assess the influence of contrast between the model
parameters and of the path length on the estimation performances. The model was then fitted to four original GPS tracks
recorded with a time step of 15 min derived from volunteer fishing vessels operating in the Channel within the IFREMER
RECOPESCA project. Results showed that the fishing activity performed influenced the estimates of the velocity process
parameters. Results also suggested future inclusion of variables such as tide currents within the ecosystem approach of
fisheries. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION
Understanding the dynamics of fishing vessels is essential to characterize the spatial distribution of the fishing effort on a fine spatial scale,
and thus to estimate the impact of fishing pressure on the marine ecosystem (Poos and Rijnsdorp, 2007; Mills et al., 2007), or to understand
fishermen’s reactions to management measures (Vermard et al., 2008) and to improve assessment of the impact of management plans
(Lehuta et al., 2013). Assessing the spatio-temporal distribution of vessels targeting fish populations also improves the understanding of the
dynamics of fish resources (Bertrand et al. (2004); Poos and Rijnsdorp (2007)).

Modeling the dynamics of fishing vessels is classically approached by statistical analyses of landing declarations. This has a low spatial
resolution (ICES statistical rectangle) (Hutton et al. (2004); Pelletier and Ferraris (2000)). Recently, the mandatory vessel monitoring sys-
tem (VMS), for legal controls and safety (Kourti et al., 2005), has led to massive acquisition of fishing vessel movement data, which offers
new means of studying the spatio-temporal dynamics of fishermen. Data consist in geographical positions recorded at a more or less regular
time step (less than 2 h for mandatory VMS data). The French Institute for the Exploitation of the Sea (IFREMER) has recently developed
the RECOPESCA project with volunteer fishermen, whose vessel positions are recorded at a 15-min time step. Mechanistic mathematical
models have long been used in ecological sciences to analyze movements and activity of different tracked animals (Bovet and Benhamou,
1988; Flemming et al., 2006).
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A key issue in behavioral ecology is the identification of the sequence of hidden (non-observed) behaviors from the analysis of the trajec-
tory, such as foraging, searching, and migration. Similar questions are investigated in fisheries science, where the identification of different
behaviors adopted by fishing vessels during a fishing trip (e.g. route toward fishing zone, fishing activity) is of interest to understand what
drives fishing activities and fishing effort dynamics.

Hierarchical models are well suited for the analysis of trajectories and hidden sequence of behaviors from discrete position records. They
first describe a non-observed time-behavioral process based on different behavioral states adopted by the individual and rules for switching
from one to the other. The path is then modeled conditionally to the behavioral state. These models are commonly called state space models
and (when the sequence of hidden state satisfies the Markov property) hidden Markov models (HMM) (Patterson et al., 2009; Langrock
et al., 2012; Jonsen et al., 2013). In animal ecology, these models were already used to describe the path of different animals such as elk
(Morales et al., 2004) or seals (Jonsen et al., 2005). The application of those tools to infer fishing vessel activity has received comparatively
little attention ((Vermard et al., 2010), (Walker and Bez, 2010), or (Peel and Good, 2011)).

The model developed in this paper presents two substantial contributions to the models published thus far to analyze fishing vessel
trajectories.

First, keeping the Markovian structure for the hidden behavior of the vessel, we propose to describe the vessel path via the
modeling of the velocity process. The latter is modeled with a bivariate Gaussian first-order autoregressive process (AR); the param-
eters of which are conditioned by the behavioral state. Models published thus far have used scalar speed and turning angles to
describe the vessel path conditionally upon the behavioral state. Those two variables are usually modeled without autocorrelation
between time steps. For instance, the Bayesian model developed by Vermard et al. (2010) defines scalar speed and turning angles
for each time step as drawn a priori in independent Gaussian and wrapped Cauchy distributions with parameters specific to the
behavioral state. The AR bivariate velocity process allows a unique Gaussian structure to be used instead of two separated distribu-
tions for speed and turning angles. The AR process also includes the autocorrelation to capture the inertia in the velocity process
(Gurarie et al., 2009). This process has already been used in animal ecology to describe animal velocity, but, to the best of our
knowledge, this work represents its first use in fisheries science to describe vessels path. It also offers computational facilities for
the inferences.

Second, the model is fitted to original GPS record data from the RECOPESCA project (Leblond et al., 2010). The RECOPESCA project
is implemented by the French institute for the exploitation of the sea (IFREMER) to improve the assessment of the spatial distribution of
catches and fishing. Although they concern a rather restricted number of fishing vessels, RECOPESCA data offer several advantages by
comparison with mandatory VMS data. First, these data are recorded with a shorter time step than VMS data (a position every 15 min
instead of every hour). Second, they are recorded with a highly regular time step (15 min C=� 1 min). The finer time scale allows for a
more accurate reconstruction of fishing vessel trajectories than do VMS data. Through an extensive simulation approach, Vermard et al.
(2010) have already shown that a shorter acquisition time step would provide better inferences on the sequence of fishing vessel behav-
ior. Bias induced by interpolating the trajectory with a straight line between two records would be lower than with an hour time step
between two points (Skaar et al., 2011). Furthermore, the regularity of these GPS records is essential for the formulation of the AR
process hypothesis.

By contrast with the fisheries-related papers previously published that fostered a Bayesian approach ((Vermard et al., 2010), (Walker and
Bez, 2010)), a maximum likelihood estimation approach is adopted. The Baum–Welch (BW) algorithm, the expectation–maximization (EM)
algorithm for HMM, is used to estimate parameters. The BW algorithm is then coupled with the Viterbi algorithm to estimate the hidden
behavior sequence. In models previously published (Vermard et al. (2010); Walker and Bez (2010)), the sequence of hidden states has been
inferred by using the posterior mode of marginal posterior distribution of each hidden state. By contrast, the Viterbi algorithm achieves
estimation of the most credible sequence of behavioral states, which better accounts for the persistence in the sequence stemming from the
Markovian (Rabiner, 1989).

The article is structured in the following way. In Section 2, we first detail the RECOPESCA data set. The methodological framework
for the HMM coupled with an AR process is then presented. Estimation methods using EM and Viterbi algorithms are later detailed. Our
simulation approach used to assess the performance of the estimation method and the sensitivity to alternative data configuration is presented
at the end of Section 2. Results over simulations and RECOPESCA data are presented in Section 3. The ending section proposes a discussion
on the adequacy of this modeling approach and some recommendations for future modeling of vessel dynamics.

2. MATERIAL AND METHODS
2.1. RECOPESCA data

Four trajectories associated with four different fishing vessels operating in the Channel with different fishing gear are considered to illustrate
our modeling approach (Table 1). These four trajectories were extracted from the RECOPESCA database. For each trajectory, GPS positions
in port and at sea were available. As the analysis only focuses on fishing vessel movement during fishing trips, we first removed positions in
port based on logbooks (landing declarations). The positions were recorded at a regular time step (15 min C=� 1). Selected trips last more
than 12 h, ensuring enough observed positions for parameter identification. These four vessels belong to the demersal fishery for which the
search for fish aggregations observed in pelagic fisheries (such as tuna fisheries, (Walker and Bez, 2010)) does not exist. Hence, only two
behaviors are assumed along their path, ‘steaming’ for cruising and ‘fishing’ when they operate their gear.
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Table 1. Technical details of the four studied trajectories

Trip Duration Vessel length Gear

A 22h 12m Dredges
B 14h 12m Otter trawl
C 13h 13m Trammel nets
D 107h 22m Otter trawl

2.2. Describing the path with the velocity process

The observed vessel path,X0; : : : Xt , is considered via a decomposition of the associated velocity process on its two dimensions V p and V r .
V p is called the ‘persistence’ speed and corresponds to the tendency to persist in the previous direction. V r is called the ‘rotational’ speed

and corresponds to the tendency to turn. These two quantities are derived as follows:

V
p
t D Vt cos. t / (1)

V rt D Vt sin. t / (2)

where Vt is the average speed derived from positions Xt�1 and Xt and  t is the turning angle derived from Xt�2, Xt�1, and Xt , with
 1 D 0. Variables V p and V r model scalar speed and turning angles jointly instead of a different distribution for each of them (as in
Vermard et al. (2010), or Walker and Bez (2010)). The bivariate velocity can be modeled using a unique Gaussian structure (Gurarie et al.,
2009), which is presented in the next section.

It is worth noting here that the velocity defined by Equations (1) and (2) is equivalent to the (linearly interpolated) observed trajectory (see
Appendix for the explicit relation).

2.3. An autoregressive process ruled by a hidden Markov models

The vessel behavior is modeled by a hidden stochastic discrete time process. This is denoted by S t0 WD S0; :::; St , where St is the state of
the vessel at time t and takes values in the set of behavioral states noted S D f1; 2g, with 1 for steaming and 2 for fishing.

This process is assumed to be a homogeneous Markov chain of the first order with a transition matrix … D .…ik/i;k2S , that is,

…ik D P .St D kjSt�1 D i/ D P
�
St D kjS

t�2
0 ; S t�1 D i

�

The initial distribution is assumed to be known and set at P .S0 D 1/ D 1 (the vessel is steaming when leaving the harbor).
Conditionally to this hidden Markov chain, the velocity process is modeled by a mixture of two-dimensional AR processes (with respect

to its decomposition in Equations (1) and (2)) and can be summarized as follows:

V
p
tC1j.StC1 D i/ D �p;i C �p;iV

p
t C �p;i �p;t (3)

V rtC1j.StC1 D i/ D �r;i C �r;iV
r
t C �r;i �r;t (4)

V
p
1 D V1; V

r
1 D 0; ��;t Ï N .0; 1/

where for each component (V p or V r ) and state (1 or 2), the following are considered.

� � is a level parameter.
� � is an autocorrelation parameter. Its existence is justified considering data from the four different trips (see Figure 1 for autocorrelation

plots of trips A–D). It is important to note that it is well defined because of the time step regularity.
� �2 is a shape parameter and is the variance of the innovation process.

As in Gurarie et al. (2009), processes (3) and (4) are assumed to be independent. Even if this assumption seems unrealistic, data reveal a
weak empirical correlation between those two variables.

AR processes as in (3) and (4) have a stationary distribution if j�j < 1 (Shumway and Stoffer, 2000). In this case, the expectation and the
variance of the process V satisfy asymptotically:

E.V / D
�

1 � �
(5)
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Figure 1. Autocorrelation function plots for trips A–D

Table 2. Parameter values for each simulation scenario. Matrix … is identical
for all scenarios. Asymptotic expectation and variance indicated are calculated
from Equations (5) and (6) and rounded to the first digit. They are asymptotic
and must be considered as indicators of how the parameters affect the different
processes. n is the number of observations along the simulated trajectories

� � �2 E V
n

Scenario 1 2 1 2 1 2 1 2 1 2

1
p

�
6 1

0 0

�
�
0 0:5

0 0:2

� �
1 0:5

0:5 0:1

�
6 2

1 0:7

0:5 0:1
400

r 0 0

2
p

�
6 2

0 0

�
6 4

r 0 0

3
p

�
6 3

0 0

�
6 6

r 0 0

4
p �

6 1

0 0

�
�
0 0:6

0 0:2

�
�
1 0:5

0:5 0:1

� 6 2:5

0 0

1 0:8

0:5 0:1
400

r

5
p

�
0 0:8

0 0:2

�
6 5

0 0

1 1:4

0:5 0:1r

6
p �

6 1

0 0

� �
0 0:5

0 0:2

�
�
2 0:5

1 0:1

�
6 2

0 0

2 0:7

1 0:1
400

r

7
p

�
1 1

0:5 0:5

�
1 1:3

0:5 0:5r

8
p �

6 1

0 0

� �
0 0:5

0 0:2

� �
1 0:5

0:5 0:1

�
6 2

0 0

1 0:7

0:5 0:1

100
r

9
p

50
r
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V .V / D
�2

1 � �2
(6)

These asymptotic mean and variance are useful for interpreting characteristics of the velocity process. If the vessel stays long enough in a
given behavior, the expectation for V p and V r could be derived from Equations 5 and (6).

2.4. Inference

The inference procedure consists in the estimation of both parameters and a reconstruction of the sequence of hidden states from observed
positions. It requires two steps: (i) performing parameter estimation using the BW algorithm and (ii) estimating the most likely sequence of
states using the Viterbi algorithm.

Considering two hidden states, the set of parameters to be estimated for this model is

‚ D f…i �; �p;i ; �r;i ; �p;i ; �r;i �p;i ; �r;i gi2S :

Therefore, 14 parameters are estimated (two for the transition matrix and 3 � 2 � 2 for AR processes on the velocity). Computing the
likelihood function is not possible within a reasonable time as it requires the integration over all possible hidden sequences (2#Time steps

possible paths). A classical approach is to find maximum likelihood estimates (MLE) O‚ via the BW algorithm, which is the EM algorithm
derived for HMM ((Rabiner, 1989); (McLachlan and Krishnan, 1997)).

Considering the model described in the preceding text, both the expectation (E) step and the maximization (M) step can be computed
analytically (details and proof are given in Appendix, and R codes (R Core Team, 2013) to perform the inference are available upon request).

The EM algorithm is an iterative algorithm to approach the MLE. The convergence criterion is reached when the log-likelihood increase
is less than 0.01 between two successive iterations. A known problem of the EM algorithm is that, given a starting point, one can converge
toward a local maximum of the likelihood. To ensure a global maximum is found, the algorithm was performed from 100 different starting
points, keeping the result with the largest likelihood as O‚.

Figure 2. Simulated velocity processes for scenarios 1, 3, 4, and 7 (Table 2). The persistent speed V p is represented along the x axis, and the turning speed
is represented along the y axis. Black dots are for fishing, and white dots for steaming

Environmetrics (2014) Copyright © 2014 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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Figure 3. Estimation errors (estimated value minus the true value of each parameter, on the y axis) obtained for the nine simulation scenarios (x axis)
presented in Table 2. Box plots represent the variability between the 100 simulations for each scenario. Only estimation errors for process V p are presented.
White and grey box plots are for parameter estimates in steaming and fishing, respectively. The whiskers represent here at most 1.5 times the interquartile

range. Outliers are not plotted

1 2 3 4 5 6 7 8 9

0.0

0.1

0.2

0.3

Misclassification rate

Figure 4. Box plots of misclassification rate from the Viterbi algorithm (on the y axis) for the nine simulation scenarios (on the x axis) presented in Table 2.
Box plots represent the variability between the 100 simulations for each scenario. Whiskers height is at most two times the interquartile range. Outliers are

not plotted

wileyonlinelibrary.com/journal/environmetrics Copyright © 2014 John Wiley & Sons, Ltd. Environmetrics (2014)



AR MODEL TO DESCRIBE FISHING VESSEL ACTIVITY Environmetrics

Once the MLE step is performed, the Viterbi algorithm is used to derive the most probable sequence of states, accounting for Markovian
properties of the whole hidden sequence.

A parametric bootstrap procedure is used to assess the variance of O‚. The MLE is used to simulate M new trajectories as bootstrap
samples on which MLE . O‚m/1�m�M are re-estimated. Given these M re-estimations, empirical 95% confidence intervals are obtained for
each parameter (obtaining central 95% values, (McLachlan and Krishnan, 1997; Efron and Tibshirani, 1993)).

To estimate the uncertainty over the state sequence estimation, the Viterbi algorithm is computed on the derived velocity process using
each MLE O�m. Formally, the Viterbi algorithm computes the most probable joint sequence of hidden states and observations:

OSm D argmaxs0:::sT

�
p
�
s0 : : : sT ; X0 : : : XT j O‚m

��
(7)

The empirical probability of being in state 2 at time t is then computed as #fm; OSmt D2g
M

. ‘Fishing’ is attributed to the estimated state with the
lowest mean for scalar speed, due to the fact that the vessel goes more slowly in that case.

The bootstrap is the most time-consuming part of the estimation.

2.5. Simulated scenarios

The performance of the estimation method is assessed through simulations of trajectories based on various scenarios mimicking differ-
ent levels of contrast in the movement and activity characteristics. The nine scenarios considered are all variants of a baseline scenario
(S1, described hereafter). However, they all share common properties on parameter values, chosen to fit the characteristics of the
observed trajectories.

1. Movement does not privilege any turning direction. Then, we set �r;1 D �r;2 D 0, leading to an expected mean of V r equal to 0 in
both states.

2. When cruising, vessel goes faster than when fishing. Then we set �p;1
1��p;1

>
�p;2
1��p;2

: the expected mean of persistent speed is greater
when steaming than when fishing.

3. At a 15-min time step, the time spent in each step is expected to be large. Then, diagonal terms …11 and …22 of the transition matrix
… are large relative to the antidiagonal terms, meaning that the probability of staying in the same behavioral state is large relative to

the probability of shifting. This matrix is common to all scenarios and set at … D

�
0:9 0:1

0:1 0:9

�
.

Trips are simulated following nine scenarios, with various degrees of mixture between states and with various numbers of observations (see
Table 2 for detailed values).

� Scenario 1: (baseline scenario). The contrast between �p;1 (D 6) and �p;2 (D 1) is large, as is the difference in autocorrelation parameters
(‘Steaming’ state is uncorrelated while ‘Fishing’ state is positively correlated).

Figure 5. The four trajectories observed from RECOPESCA position records. Estimated probabilities of being in state 2 (fishing) for each trip (A, B, C, and
D) are plotted, from 0 (white dots) to 1 (black dots). The right panel is a zoom over a specific zone of trip B (shaded rectangle). Estimations for trip D cannot

be interpreted as steaming/fishing (see text)
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� Scenarios 2–3: �p;2 increases from 1 (scenario 1) to 2 (scenario 2) and 3 (scenario 3), resulting in an increase in the asymptotic expectation
of V p in state 2. Therefore the contrast in the expected asymptotic speed between state 1 and 2 decreases.

� Scenarios 4–5: �p;2 increases from 0.5 (scenario 1) to 0.6 (scenario 4) and 0.8 (scenario 5), resulting in an increase in the asymptotic
expectation of V p in state 2. Therefore, the contrast in the expected asymptotic speed between states 1 and 2 decreases. Moreover, the
asymptotic variance of process V p increases in state 2.

� Scenarios 6–7: In scenario 6, �2p;1 and �2r;1 increase from 1 and 0.5 (scenario 1) to 2 and 1, respectively, resulting in a higher asymptotic
variance in state 1. In scenario 7, �2p;2 and �2r;2 increase from 0.5 and 0.1 (scenario 1) to 1 and 0.5, respectively, resulting in a higher
asymptotic variance in state 2.

� Scenarios 8–9: The number of observations is shortened from 400 points (scenario 1) to 100 points in scenario 8 and 50 points in scenario
9. Four hundred points and 50 points would represent, respectively, 100 and 12 h data considered and were the maximal and the minimal
lengths of trajectories considered.

3. RESULTS
3.1. Results on simulated scenarios

Nine scenarios (corresponding to nine sets of parameters), mimicking different levels of contrast in the movement and activity characteristics,
were simulated.

For each scenario, 100 trajectories are simulated, thus providing 100 parameter estimates and 100 estimations of the most credible
sequence of behavioral states derived from the Viterbi algorithm.

Examples of velocity process obtained with parameters of scenarios 1, 3, 4, and 7 are represented on Figure 2. These scatter plots highlight
the different degrees of mixture between the two states, depending on the scenario.

Knowing the true value of each parameter, estimation errors are computed and summarized using box plots (Figure 3). Results are shown
only for process V p , as trends are similar on process V r (results for V r are shown in Appendix). Moreover, as the true sequence of
behavioral states is known, a misclassification rate is also computed and displayed using box plots (Figure 4).

Figure 6. Velocity process for each trip (A, B, C, and D). The persistent speed V p is represented along the x axis, and the turning speed is represented along
the y axis. The estimated probability of being in state 2 (fishing) for each trip is plotted, from 0 (white dots) to 1 (black dots)
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� Scenarios 1–3: For all parameters, the width of the box plots increases from scenarios 1 to 3, revealing that decreasing the contrast between
�p;1 and �p;2 has a negative impact on the estimation of all parameters (Figure 3). Moreover, the misclassification rate of the behavioral
states is also increased. Even if it remains low for scenarios 1 and 2, it increases for scenario 3 (more than 50% of the 100 simulations
result in a misclassification rate greater than 0.15, Figure 4). Looking at Figure 2, this large misclassification rate is explained by the large
degree of mixture between states in scenario 3.

� Scenarios 1 and 4–5: Increasing �p;2 (while keeping �p;1 and �p;2 unchanged) increases estimation uncertainty over level and auto-
correlation parameters � and � (Figure 3). The misclassification rate also increases, with a low increase for scenario 4, and a larger one
for scenario 5 (Figure 4). Indeed, there is an increase in the degree of mixture between states from scenario 1 to scenarios 4 and 5 (see
Figure 2 for scenario 4).

� Scenarios 1 and 6–7: In scenario 6, increasing variance parameters �2p;1 in state 1 slightly increases the uncertainty over the estimates
of level and variance parameters �p;1 and �2p;1. The same effect is noticed in scenario 7 when variance parameters in state 2 increase
(Figure 3). The misclassification rate remains stable between scenarios 1 and 6, but increases for scenario 7 as the processes in both states
have in this case the same variance parameters (Figure 4). Indeed, there is an increasing in the degree of mixture between states from
scenario 1 to scenario 7 (Figure 2).

� Scenarios 1 and 8–9: When the number of observations is shortened, estimation uncertainty increases for all parameters (Figure 3).
Moreover, the misclassification rate is also impacted, getting worse as the observation length gets shorter (Figure 4). Looking at estimates
of O…22 (for instance, the same can happen for O…11), it is worth noting that considering only 50 data points as in scenario 9 can lead to
estimating O…22 close to 0. This results in the identification of only one behavioral state, and then in a large misclassification rate.

Figure 7. Estimations for parameters in each trip. The mean speed in each state and the proportion of time spent fishing are also presented. Box plots represent
the variability over estimates as assessed by the bootstrap procedure. White boxes stand for state 1, and grey ones for state 2

Environmetrics (2014) Copyright © 2014 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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More generally, it is worth noting that for all scenarios, estimations are unbiased. Moreover, except for scenario 7 where variance parameters
are equal in both states, the variance of estimators is greater for state 1 parameters than for state 2 parameters, as the variance parameter is
larger in the first state (�2p;1 > �

2
p;2).

3.2. Results on RECOPESCA data

The four observed trajectories are represented on Figure 5 together with the estimated probabilities of fishing at each observed position of
the vessel. Velocities associated with these trajectories are represented using scatter plots on Figure 6. The uncertainty in distinguishing the
behavior of fishing from steaming is low for all trips, as the estimated probability of fishing is most of the time 0 or 1 (Figure 6). However,
misidentification between fishing and steaming might occur at certain turning points (Figure 5).

Estimations for the 14 parameters, the estimated proportion of time spent fishing and the mean scalar speed in each behavioral state are
presented on Figure 7. As expected, parameters …11 and …22 are high on those four trips showing a persistence to stay in a given activity.
Parameters �r are estimated quite close to 0, except on trip A. In this case, �r;1 is slightly negative, stemming from the tendency of this
vessel to always turn in the same direction during this trip.

The four trips have different patterns: trip A has an erratic fishing activity at low speed, trips B and C have a similar constant fishing activity
pattern, with a constant speed and a steady course, and trip D is a mix between strongly autocorrelated speed patterns and abrupt changes.

For trip A, estimated steaming and fishing states are clearly separated on a scatter plot of velocity (Figure 6), steaming being concentrated
at high values for V p (large value of �p;1) and fishing being more dispersed at lower values of V p (smaller value of �p;2). Steaming
represents 20% of the vessel activity during the trip and takes place at high speeds (mean around 8.4 knots), while fishing represents 80% of
the vessel activity, occurs at a lower speed (mean of 2.6 knots), and is more erratic.

For trips B and C, both components of the velocity process, V p and V r , have a very low variability (Figure 6). In those two cases,
parameters �:;2 and �2:;2 are small, resulting in a process (while fishing) with a small variance. Fishing then occurs at constant speed and
results in a steady course. By contrast, the steaming state is estimated with large variance parameters (�2:;1 have large values). Then, as
expected after simulation analysis, parameter estimates of V p and V r for this behavioral state are more uncertain.

For Trip D, estimated steaming and fishing states are more mixed. Parameter estimates show a low uncertainty for fishing and a larger
uncertainty for steaming. Trip D has more than 400 observed positions; therefore, given the results of the simulation analysis, the uncertainty
of state 1 estimated parameter can be associated to with large variance in the process (large values for �2:;1 ). Moreover, state 2 is here
characterized by a parameter �p;2 very close to 1, translating a highly autocorrelated V p process in state 2. Interpretation of results obtained
in trip D is questionable. Behaviors are mixed along the whole trajectory and seem unrealistic in terms of steaming/fishing (Figure 5).
Figure 8 presents the scalar speed process for this particular trip. It shows that scalar speed does not differentiate the two states: both fishing
and steaming present high speed values. However, this is not realistic considering the vessel can operate an otter trawl at 10 knots. Actually,
the two states are likely separated out based on the magnitude of autocorrelation in the V p process, state 2 being highly autocorrelated
(�p;2 � 1) with a small variance (low �2p;2) and state 1 being less autocorrelated and with a larger variance parameter (larger �p;1). On
Figure 8, the autocorrelated process corresponds to a portion of sine waves, and the other state is noise.
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Figure 8. Scalar speed process for trip D, with estimated states. Probability of being in state 2 is plotted from 0 (white dots) to 1 (black dots). The model seems
to fail to attribute behavioral state with respect to the speed, as the scalar speed is high for both states. The state attribution here is based on autocorrelation

(black dots and white dots for high and low autocorrelation, respectively)
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4. DISCUSSIONS AND PERSPECTIVES
This paper provides a first application of an AR process coupled with a hidden Markov chain to describe the movement of fishing vessels.
The AR process allows a general framework with Gaussian properties and interpretable parameters. In this paper, it is shown how the velocity
process viewed as an AR process can be used in order to analyze fishing vessel trajectories.

Application to the RECOPESCA data set provides insights into the understanding of fishing vessel activities at a fine spatio-temporal
scale. Results over the four studied vessels highlight differences within trajectories (different types of vessels and fishing activities, (Biseau,
1998)) and within-trajectories (between steaming and fishing) in terms of time series characteristics (means, variance, and autocorrelation)
that can also be translated in terms of physical patterns (fast, slow, erratic, and steady). These results show that the fishing activity performed
influences the estimates of the velocity process parameters.

The model considered here has two states, steaming and fishing, which could be similar to a ‘migrating’/‘foraging’ pattern adopted for
animals (Jonsen et al., 2007), whereas a three-state model can be used (Vermard et al., 2010; Walker and Bez, 2010). This was made possible
thanks to a pre-treatment of the data that consists in removing positions in port (which could be associated with a third state) but also because
each studied fishing vessel operates with suitable gear that do not require research or stopping phase. If a two-state model is realistic here, it
could be more relevant in other cases to adopt a three or more state model for trips during which several types of fishing gear can be operated
or several métiers can be performed. A model with ‘transition’ states can also be adopted to deal with problems due to time step acquisition,
and specifying different parameters for each fishery (Peel and Good, 2011). It is to be noted that increasing the number of states would not
add any difficulty to the method presented here (Jonsen et al., 2013). A more challenging alternative to these choices would be to consider a
state space model where the number of states is a parameter to be inferred.

However, one has to question how to interpret the autocorrelation. In this study, trip D (trip of a 22 me bottom trawler) is disentangled
into two states, one associated with highly autocorrelated persistent speed (�p;2 ' 1) and one associated with a less correlated persistent
speed. It is to be wondered whether the estimated autocorrelation is of interest for the user’s purpose (here, knowing when the vessel is
fishing) or whether it is the expression of an external factor that does not reveal the hidden behavior. In the case of trip D presented here,
the autocorrelated pattern might be the consequence of external factors that should be removed to accurately identify the steaming/fishing
sequences. In that specific case, tide currents might be a cause of autocorrelated patterns. This covariate should then be included for future
modeling of the vessel movement.

Along with this application on data, a simulation approach on nine contrasted scenarios is performed. The importance of the duration of
observation is established as already noted by Vermard et al. (2010): the longer the trajectory, the better the estimation. Then, we recommend
that results be interpreted with caution when dealing with small vessels as they might not have long enough trips to reliable estimation. In
order to apply this model to VMS mandatory data, this has to be taken into account as a potential problem. This model might not be well
suited for VMS data as the linearity hypothesis would be even stronger at a 60 min time step, and the irregularity makes the use of an AR
process inappropriate. Moreover, the simulation approach pointed out problems to identifying two behaviors when the contrast between them
is too small. In practice, it implies that two ‘similar’ fishing activities (for instance, dredging and trawling) might not be distinguished).

The AR process presented here, which allows the introduction of autocorrelation into the velocity process, was used by Jonsen et al.
(2005) to model seal movement but was never applied to the movement of fishermen, which is often compared to top predator movement
(Bertrand et al., 2007). This approach allows us to model the bivariate velocity process (which fully describes the trajectory) with a unique
Gaussian structure instead of two separate distributions as in previous models (Vermard et al., 2010; Walker and Bez, 2010).

An interesting point of the model is its link with continuous time models. It is known that an AR process (with � > 0) is a discrete version
of the continuous time Ornstein–Ulhenbeck process (OUP), as long as the time step is regular (Johnson et al., 2008). Indeed, this model can
be seen as an OUP sampled at discrete time coupled with an HMM, and there exists a bijection between the MLE of a positively correlated
AR process and MLE of the regularly sampled OUP (see Appendix for proof). The OUP is known to be the solution of a specific stochastic
differential equation (SDE). SDEs are a general and challenging tool to model spatial trajectories (Brillinger, 2010), as its continuous time
property allows us to deal with irregularity in data but also to integrate spatially continuous covariates that rule the individual dynamics.
However, it is to be mentioned that SDEs would require having instantaneous velocities, and not averaged velocities as in the presented
model. This is a line of research we wish to explore further to circumvent modeling difficulties of VMS mandatory data.

The parameter estimation is performed using the BW algorithm and the reconstruction of the hidden state sequence is achieved thanks
to the Viterbi algorithm. In order to compare results, inferences were also performed in a Bayesian framework (not shown here) using
Markov chain Monte Carlo methods, and estimates showed similar results. Actually, there are several techniques for estimating parameters
in HMM (Jonsen et al., 2013). Considering the AR process presented here, the BW algorithm does not need numerical techniques as the
equations associated have analytic solutions. This allows the algorithm entirely to be coded without any toolbox, which is, in our opinion,
an advantage, even if this might not be faster (Zucchini and MacDonald, 2009). The uncertainty about estimates is assessed using bootstrap
methods instead of Fisher matrix, which could be given as an output of the algorithm. Bootstrap methods might take longer to compute (this
is the most time-consuming part of the algorithm), but it does not rely on asymptotic assumptions, which would not stand for short trips
presented here(Efron and Tibshirani, 1993; Zucchini and MacDonald, 2009).
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