<-
liste readLines('spatstat.bib') |>
as_tibble() |>
filter(stringr::str_detect(value, pattern = '@|keywords')) |>
rowid_to_column() %>%
mutate(int_part = floor((rowid-1)/2), parity = rowid %% 2) %>%
select(-rowid) %>%
pivot_wider( values_from = value, names_from = parity, names_prefix = "key") |>
mutate(key1 = stringr::str_remove(key1, pattern = '@[:alnum:]+\\{')) |>
mutate(key1 = stringr::str_remove(key1, pattern = ','))
<- liste %>%
statspat_liste filter(str_detect(key0, 'spatstat')) %>%
select(key1) %>%
pull()
NoCite(bib = myBib, statspat_liste)
References
Pour approfondir ou compléter le cours
Spatial and spatio-temporal models with R-INLA (2013). “Spatial and spatio-temporal models with R-INLA”. In: Spatial and spatio-temporal epidemiology 4, pp. 33-49.
Bayesian inference with INLA (2020). Bayesian inference with INLA. Chapman and Hall/CRC.
Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.
Gaetan, C., X. Guyon, and others (2010). Vol. 90. Springer.